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This study, summarized in two parts, is directed at the investigation of the non-linear performance of 
Nomex, Kevlar and polypropylene fibres, when undergoing stress relaxation tests. The description of the 
strain-dependent performance is based on a two-component model, which comprises an elastic and a 
viscous contribution. A shape-invariant relaxation function is introduced that is based on the cumulative 
log-normal distribution. This first part is directed at the description of the experimental procedures and 
of the approach to the analysis of the stress relaxation data. 
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INTRODUCTION 

The theory of linear viscoelasticity (LVE) for polymers 
is, similarly to Hooke's law for elastic materials, only an 
approximation of the real material performance. Linear 
viscoelasticity is generally assessed by checking the 
applicability of the criteria of proportionality and of 
superposition in one of two simple experiments, namely 
isothermal stress relaxation or creep (e.g. ref. 1). 

The range of linear viscoelasticity, extending for glassy 
polymers over comparatively small stresses and strains 2, 
is generally the range for the application of polymers as 
engineering materials, where the calculation of the 
mechanical performance of structures can be conducted 
with a high degree of accuracy 2'3. Strains outside the 
range of LVE, i.e. beyond ca. 1% for amorphous and 
0.4% for semicrystalline, glassy polymers 2, are considered 
as critical for engineering applications a, since the region 
of non-linear viscoelasticity borders on that of material 
failure. 

To further the understanding of the role of strain 
for the non-linear viscoelastic (NLVE) performance of 
polymers, this study, summarized in two parts 4, is 
directed at the investigation of the strain-induced NLVE 
effects in Nomex ®, Kevlar ® and polypropylene fibres, 
when undergoing a single-step stress relaxation test. 
These polymers were specifically chosen as examples of 
materials exhibiting typical types of mechanical be- 
haviour, as expressed by their stress-strain curves (see 
Figure 1), as well as for their technical and economic 
relevance. 

An analytical model is introduced that enables us to 
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describe systematically the strain-dependent stress re- 
laxation performance of the three types of polymer fibres. 
The analysis is based on a two-component model, as 
implied in the theory of linear viscoelasticity 5, which 
comprises an elastic component and a viscoelastic 
contribution, the time dependence of which is described 
by a shape-invariant relaxation function. The application 
of the model to stress relaxation data leads to the 
detection of pronounced strain-induced modulus changes 
of the components and of a shift of the relaxation function 
with strain that is consistent with a solid-fluid transition. 

This first of two papers is directed at the description 
of the experimental procedures, the approach to the 
analysis of the resulting data and the assessment of the 
performance of the analysis procedure. The second part 4 
is directed at the discussion of the implications of the 
results with respect to the morphology of the materials 
and to their rheological performance. 

MATERIALS 

Kevlar (poly(p-phenylene terephthalamide)), investigated 
in the form of Kevlar 29 (DuPont), is a fibre with a high 
degree of orientation and crystallinity that is spun from 
a liquid-crystalline solution of extended-chain molecules. 
The ensuing structure of parallel, densely packed chain 
molecules is assumed to be only disturbed by chemical 
'defects', introduced by chain ends, and by structural 
defects, like kinks and dislocations 6. In consequence, 
Kevlar is an example of a highly elastic polymeric fibre 
with a high elastic modulus and a low breaking strain 
(see Table 1 and Figure 1). 

Though the chemical structure of Nomex (poly(m- 
phenylene isophthalamide)) is somewhat similar to that 
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Table 1 Values of the initial modulus, E, the breaking stress, trs, and 
the breaking strain, eB, of the Kevlar, Nomex and polypropylene (PP) 
fibres used in this study, determined from a minimum of 15 fibres 
according to ASTM D2101 al 

Fibre type E a a eB A Ae 
(GPa) (MPa) (%) (#m 2) (%) 

Kevlar ~ 73.3 2450 2.9 115 0.139 
CV(%) 11 26 25 10 

Nomex ~ 13.7 502 34 170 0.144 
CV(%) 13 4 18 7 

PP ~ 1.65 258 151 365 0.023 (n.s.) 
CV(%) 13 6 15 17 

Ae is the correction term for the calculation of true fibre strain; (n.s.) 
denotes statistically "not significant' at the 90% significance level. A is 
the fibre cross-sectional area, determined by the vibroscope method, 
is the arithmetic mean and CV the coefficient of variation 

~u 
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Kevlor 

I I 290  

Figure 1 Qualitative comparison of the stress-strain curves of poly- 
propylene (PP), Nomex and Kevlar fibres. To facilitate the comparison, 
the mean fracture strain is given for each case. The inset for the Nomex 
curve elucidates the concept of initial fibre length l o and length change Al 

of Kevlar, the meta links of the monomeric unit introduce 
kinks into the polymer backbone ~ and thus hinder a high 
degree of structural organization. In consequence, Nomex 
shows the stress-strain behaviour typical for a partially 
crystalline, glassy polymer and similar to that of aliphatic 
polyamides. Compared to Kevlar, Nomex has a 5-6 times 
lower modulus (see Table 1) and shows beyond ca. 2% 
strain an extended yield region (see Figure 1) up to the 
breaking point around 35% strain. With a high glass 
transition temperature of T s -  350°C 6, due to the highly 
aromatic polymer backbone, at around room temperature 
Nomex is far within the glassy region of mechanical 
behaviour. 

The polypropylene (PP) fibres that were examined are 
a commercial, isotactic product for textile purposes 
(Vestolen P1200, Chem. Werke Hills AG). Isotactic poly- 
propylene is a thermoplastic, partially crystalline ( -  60%) 
hydrocarbon polymer, for which the glass transition 
temperature T z -~ - 10°C is well below room temperature s. 
The modulus of polypropylene is approximately one 
order of magnitude smaller than that for Nomex (see 
Table 1) and the fibre exhibits, beyond -~ 10% strain, a 
very extended yield region up to the breaking strain 
around 150% (see Figure 1). 

With respect to their chemistry, structures, glass 
transition temperatures and stress-strain curves, the three 
types of fibres represent a wide range of polymer 
performance, for which, on extending a previous account 
of some of the data 9, a systematic and uniform description 
of the NLVE stress relaxation behaviour is sought. 

EXPERIMENTAL 

The single-step stress relaxation test, as schematically 
described in Figure 2, is one of the simplest methods for 
the examination of the viscoelastic properties of polymer 
fibres. The fibre is deformed within a short period of time, 
At, to a predetermined strain, e, at a constant rate of 
deformation, ~=e/At (e.g. 20%/min). Subsequently the 
strain is held constant and the drop of the resulting force 
F is followed with time, where the starting point of the 
relaxation and hence the start of the experimental 
timescale is the end-point of the straining step, t o. F(0) 
is the initial force and Fog -F(oo)  the generally unknown 
value for the equilibrium force for t--, oo. 

The relaxation modulus, E(t), for a given initial fibre 
cross-section, A, is given, corresponding to the elastic 
case, by: 

E(t)= F(t)/(Ae) (1) 

where the strain, irrespective of strain level, is given by: 

e = Al/l o (2) 

A1 is the length change and l 0 is the initial specimen 
length, determined according to the procedure described 
in the following section and illustrated by the inset in 
Figure 1. 

To minimize influences due to relaxation during the 
strain step and due to experimental background effects, 
which become significant at longer experimental times, 
only data in the range A t < t <  10*s were used for the 
analysis. 

Prior to the stress relaxation experiments, the cross- 
sectional areas of the individual fibres were determined 
with a vibroscope (Fa. Insco). The mean cross-sectional 
areas of the fibres are given in Table 1. 

All experiments were conducted on an Instron (Type 
1122) tensile testing machine in a room of standard 
climatic conditions (22°C, 65% r.h.). To minimize influ- 
ences of thermal fluctuations, the specimen and its 
clamping arrangement were enclosed in a glass cylinder 
for which a temperature-controlled water jacket ensured 
a constancy of the temperature within less than _ 0.5°C 
during the experiment. At the bottom of the cylinder a 
layer of an appropriate glycerol/water mixture ensured 
furthermore a stable relative humidity (65% r.h.) around 
the specimen. 

To increase the force signal and to facilitate fibre 
alignment, the fibres were examined in the form of loops 
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Figure 2 Strain (e) and force (F) changes, schematically, during a 
single-step stress relaxation test 
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of 50 mm overall length that were led over a stainless-steel 
hook (1.5 mm diameter) connected to the load cell. The 
ends of the loop were secured by an appropriate damping 
arrangement to the moving cross-head of the machine ~ o. 
The results in Table 1 were obtained with this set-up and 
applying the principles of ASTM D2101 ~ 

Machine characteristics, like baseline drift at low 
stresses and machine deformations at high stresses, were 
determined prior to the experiments. They were found 
to be negligible for most of the experimental range and 
were corrected when necessary. The influence tolerated 
by such effects without correction was set to 0.1% relative 
to the force signal. 

Strain correction 
When performing stress-strain tests on fibres it is a 

common phenomenon that the resulting curves exhibit 
a more or less pronounced curved region at low stresses, 
attributable to fibre decrimping and geometrical align- 
ment of the experimental set-up. As outlined in ASTM 
D2101 ~ and illustrated in the enlarged inset of the 
Nomex curve in Figure 1, this effect is corrected for by 
extrapolating the linear part of the force-elongation curve 
to zero force, and thus determining the effective specimen 
length, Iv, with respect to the original separation of the 
fixation points of the fibre loop. 

The clamping arrangement for gripping the fibre ends 
consisted of flat jaws, the faces of which were plated with 
combinations of Teflon, aluminium and rubber, individu- 
ally chosen for a fibre type to minimize slippage. Gross 
fibre slippage, whether continuous or discontinuous, is 
usually readily detectable in the force-elongation curves. 
However, to show the nature and size of less obvious 
effects, Figure 3 summarizes strain versus initial stress 
results, that is e versus a(O)= F(O)/A, for the three types 
of fibres for low strains (~<2%). Regression analysis 
shows that the strain data follow straight lines (r2>~ 0.95 
in all cases) that intersect with the y-axis at positive 
strains, which are statistically significant (90% confidence 
limits) for Kevlar and Nomex (see Table 1). In conse- 
quence, all experimentally determined strains were cor- 
rected individually for each fibre type by subtracting the 
values of Ae, given by the positive y-axis intercepts of the 
regression (see Table 1). 
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Figure 3 Initial stress o'(0) and strain ~ for the region of low strains 
(e<2%). Data points from individual experiments are given for the 
three types of fibres. Full lines are linear regression lines 

APPROACH TO NON-LINEAR VISCOELASTICITY 

The conventional description for the viscoelastic be- 
haviour of polymers in stress relaxation is given byS: 

e ( t )  = e oo + AE 'P ( t )  (3) 
This approach comprises two components: a time- 
independent, elastic component, E~; and a viscous com- 
ponent with a limiting elastic modulus, AE=(Eo-E=) ,  
where Eo is the upper limiting modulus. The time 
dependence of the properties of the viscous component 
is described by the relaxation function, W(t), formally 
given by: 

• (t) = h(~) e -  '/~ d In z (4) 

where h(z) is the normalized relaxation-time spectrum 
with the property: 

f +  h(~) ~ = (5) 
co 

d In 1 

In parallel to the widespread use of the expanded 
exponential form of the Kohlrausch-Williams-Watts 
(KWW) function, a certain tradition has been established 
in keratin research to describe the stress relaxation 
function using the log-normal or rather the cumulative 
log-normal distribution (CLND) function given for the 
log~o(time ) scale by: 

• (t) = [ l / (x/~fl)]  exp{ - ½ [ ( x -  e)/B]2} dx (6) 
og t  

where e is the mean and fl the standard deviation of the 
underlying log-normal distribution, which, on the basis 
of Alfrey's rule 12, is an approximation of the distribution 
of relaxation times, as suggested by Feltham la and as 
originally introduced by Wiechert 14. On the basis of this 
description ~(t) forms a strictly symmetrical S-shaped 
curve on the log(time) scale, which drops from unity to 
zero within a range of approximately e + 4ft. 

The model described by equations (3) and (6) will be 
referred to as the two-component (TC) model, in what 
follows, which is a more general term for the two-phase 
model successfully applied by the authors for the 
interpretation of the thermorheological and hydro- 
theological properties of semicrystalline, biological and 
synthetic polymers 9'~-17. The general procedure to fit 
the model to the data is described in the Appendix. 

The application of equations (3) and (4) or rather of 
equations (3) and (6) as a basis for the analysis of 
relaxation data implies that, during the time interval to 
be studied, the relaxation functions are invariant, mean- 
ing on a more general scale that the material is non-ageing 
according to the principles outlined by Struik ~a. This 
assumption is justified in view of the experimental 
time of ca. 2 h being very small compared to the storage 
time and hence the ageing time for the commercial 
materials of at least several months prior to the tests. 

Furthermore, equation (3) is a valid description of the 
relaxation behaviour only in the LVE region, which even 
for glassy amorphous polymers extends only to a 
maximum of 1% strain 2. To extend this approach for 
non-linear viscoelastic properties, induced by strains 
beyond this limit, an extension of equation (3) based on 
Schapery's theory ~9 is used as: 

E(t, e) = h~(e)E~ + h,(e)AErt~p(t/a(e)) (7) 
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Here E~ and AE R are the moduli of the elastic and the 
viscoelastic components at a reference strain within the 
LVE range; he and hv are the strain functions that describe 
the changes of the reference moduli of the elastic and 
viscoelastic components, respectively. The strain-induced 
shift of the relaxation function on a log(time) scale with 
respect to the reference state is described by the 
acceleration factor, a(e). From a thermodynamic point 
of view, the strain-dependent properties of he and hv are 
due to third- and higher-order strain effects in the 
Helmholtz free energy, while changes in a(e) arise from 
strong strain influences in both entropy production and 
free energy 19. 

On the basis of the description of the relaxation 
function in equation (6), the acceleration factor a(e) in 
equation (7) is given by: 

log a(e) = ~(e)-- ~(eR) (8) 

where ~(e) and ~(eR) are the mean log-relaxation times at 
a given strain, e, and at the chosen reference strain, eR, 
respectively. This description assumes strain invariance 
of the shape of the relaxation function, which, translated 
into the physical model, implies invariant strain activation 
for all relaxation times. This is in contrast to the hypo- 
thesis of a narrowing of the relaxation-time spectrum with 
strain 2°, as backed by experiments on polycarbonate2L 

It is not by chance that equation (7) is similar to 
Schapery's 19 description of generally thermorheologi- 
cally complex materials, thus implying, quite generally, 
an equivalence between the effects of strain and of 
temperature, namely the yield of polymers is often 
treated as a transition from solid-like to fluid-like 
behaviour, much like a thermally induced solid-fluid 
transition 21-23. 

Equation (7) comprises a number of simpler models 
that relate to superposition of the curves by horizontal 
and/or vertical shifts on the log E versus log t scale, and 
which with respect to their applicability for the cases 
presented here will be discussed in part 24. 

CHOOSING THE SHAPE OF THE RELAXATION 
FUNCTION 

Figures 4-6 summarize experimental data for the relaxa- 
tion stress of Nomex, Kevlar and polypropylene fibres 
for various strains and in the conventional double- 
logarithmic plot. For each material the data follow, 
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irrespective of strain magnitude, virtually straight lines 
of similar, if not equal slope, where the decision for a 
horizontal and/or vertical shift, and hence for the 
interpretation based thereon, would be difficult to make. 

Investigations by the authors into the properties of the 
generalized TC model, represented by equations (6) and 
(7), have shown 1°'24 that it is generally not trivial to 
obtain a stable fit of the model to the experimental data 
in Figures 4-6. Within the restrictions imposed by the 
experimentally accessible time range of up to 104 s, the 
fits generally become unstable towards increasing Eo and 
decreasing Eoo. This effect is documented by the surface 
contour plot in Figure 7, showing levels of equal goodness 
of fit on the Eo/E(O ) versus Eo~/E(O) plane (see Appendix) 
for an experimental relaxation curve of a Nomex fibre 
(e= 1%). Though the chosen case is atypical, in that it 
deviates in its performance markedly from other similar 
measurements, it was chosen for illustrative purposes 
owing to the significant offset of the minimum along both 
axes. However, rather than showing a well defined 
minimum, the lowest contour line for (1 - r  2) × 104, as the 
parameter to be minimized (see Appendix), encloses a 
very 'shallow valley' that opens continuously to slightly 
lower minima towards the lower right corner of the 
surface and beyond. 

Restrictions to stabilize the fit may be introduced by 
applying assumptions that lead to a superposition of the 
curves by rigid horizontal and/or vertical shifts on a log E 
versus log t scale. However, an alternative restriction may 
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be introduced by using an a priori assumption about the 
shape of the relaxation function, namely of the value of 
the standard deviation fl in equation (6). A detailed 
discussion of alternative models to systematize the data 
is presented in part 24 . 

The choice of the value of fl is based on Kubat's 
work 2s'26 on the material invariance of the shape of the 
relaxation function for different polymers and metals. An 
analysis of Kubat's data showed that the width of the 
relaxation function for the materials may be well 
described on the loglo(time) scale by using a value for 
the standard deviation in the CLND function in the range 
of fl = 29,16,17,27. Following the initial observation of this 
phenomenon 27, a value of fl= 1.9o was chosen for the 
current investigation. 

Extending a previous account of the analysis 27, data 
for the relaxation stress, a(t), for indium, cadmium, lead, 
Lipowitz alloy, rubber hydrochloride, polyisobutylene, 
polyethylene and cetyl alcohol were calculated from the 
values given by Kubat 25'26 for initial stress a(0), for 
relative equilibrium stress aoo/a(O) and for the relaxation 
function. Subsequently the TC model was fitted to the 
data on the basis of fl = 1.9o, by applying the procedure 

described in the Appendix. Kubat's estimates for a(0) and 
for ao~/a(O) and the results of the optimization/fitting 
procedure are summarized in Table 2. The quality of the 
fits of the relaxation function data onto a common master 
curve is documented in Figure 8, where W(t) is plotted 
for the eight materials versus the standardized time 
parameter, u. The shape of the relaxation function is 
consistent with Kubat's observation for the In(time) scale 
that the slope at the turnover point is material-invariant 
as 0.1+0.0125 . The value calculated on the basis of 
equation (6) and fl= 1.9o is dqJ/dln tl~l, lO=0.091. 

The results in Table 2 show, in accordance with the 
results summarized in Figure 8, that the quality of the 
fits is rather satisfactory in all cases (r 2 > 0.98). Values of 
r2<0.99 relate in all cases to systematic differences 
between experiment and theory in the region of low 
values of "2(t) (~<0.15), where the deviations may be 
attributed to generally unknown background effects, 
which may, for example, relate to a further long-term 
relaxation process. 

The deviations in the estimates of initial stress may be 
attributed to the restriction in this analysis to data for 
t>At,  in order to suppress most effects of relaxation 

0,64~ 
"UT 0,62 [~,, ~.. 

0,56 ~ " " 
1,0 

0282 62 t~2 2 2 ~  

1.1 1,2 1,3 1,/,. 
Eo/E(o) 

Figure 7 Contour plot for the coefficient of non-determination 
(1 - r  2) x 104 in the Eo/E(O) vs. Eo~/E(O) plane, when fitting the CLND 
function to experimental data for the relaxation curve of a Nomex fibre 
at 1% strain. The broken curve through the plot connects the cases of 
a constant standard deviation of fl = 1.90. The cross ( x )  marks the 
minimum along the line 
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Figure 8 Data for the relaxation function W versus the standardized 
time parameter u = ( l o g t - c t ) / f l  for indium, cadmium, lead, Lipowitz 
alloy, rubber hydrochloride, polyisobutylene, polyethylene and cetyl 
alcohol. The results are derived from Kubat 's stress relaxation data 25,26 
by applying the TC model with the CLND function under the restriction 
of ~ = 1,90. The full curve is the theoretical relaxation function 

Table 2 Results for fitting the TC model to Kubat 's data for the relaxation stress of a variety of materials 25"~6. The start values are the characteristic 
data given by Kubat  

Start values Optimization results 

O(O) At 
Material (MPa) (s) a Jo-(O) ao/o(O ) a Jo(O)  ot r 2 

In 2.0 6.2 0 1.27 0 1.10 0.986 

Cd 13 1.7 0.1 1 0.03 2.58 >0.999 

Pb 4.0 4.1 0.15 1 0.11 3.23 0.987 

LA 380 1.5 0 1.11 0.01 1.48 > 0.999 

Rub-HCI 1.1 2 x 10 -a 0.32 1.12 0.31 -0 .03 >0.999 

PIB 0.04 6.2 0 1.18 0 2.46 0.986 

PE 0.19 1.7 0.39 1.06 0.35 1.77 > 0.999 

Cet.alc. 0.4 1.2 0 1.16 0.04 1.11 0.999 

In =indium, Cd=cadmium,  P b = l e a d ,  LA=Lipowi tz  alloy, Rub-HCl=rubber  hydrochloride, PIB=polyisobutylene,  PE=polyethylene,  
Cet.alc. = cetyl alcohol 
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during straining without undue reduction of the data 
range. It is hence not surprising that the ratio between 
the result of this analysis and Kubat's estimate is highest 
for indium, tro/cr(0)=l.27, where the separation of 
straining time and mean relaxation time on the log(time) 
scale is by far the smallest, namely (~ - l o g  At) = 0.31, 
while for the other materials ao/tr(0 ) is generally well 
below 1.2. The agreement between the estimates for 
tro~/tr(0) of Kubat and of this analysis is considered to be 
very satisfactory. 

The broken curve in Figure 7 marks the cases where 
for the relaxation function of a Nomex fibre fl = 1.9o is 
found in the optimization. The curve cuts through the 
surface such that it shows a well defined minimum with 
a value of(1 - - r  2) × 104---20, which is marked ( x ) on the 
curve. On the basis of the preset standard deviation, the 
TC model described by equations (6) and (7) could in all 
cases be stably fitted to the data, applying the weighted 
linear regression procedure described in the Appendix. 
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Figure 11 Relaxation function data for polypropylene fibre relaxation 
at strains between 0.33% and 58%. Full curves are theoretical descrip- 
tions for 0.33% (lower curve) and 30% strain (upper curve) 

DATA ANALYSIS AND RESULTS 

The application of the TC model reveals the fine structure 
of ~(log t) as a function of strain. Figures 9-11 summarize 
results for the relaxation curves of the materials at various 
strain levels, chosen to cover the individual experimental 
ranges. 

For Nomex at low strains, up to the expected limit of 
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Figure 9 Relaxation function data for Nomex fibres at various strains 
as indicated. The full curve through the upper set of data points is the 
theoretical function for the data at 0.21% strain ( x )  
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Figure l0 Relaxation function data and theoretical descriptions (full 
curves) for Kevlar fibre relaxation at various strains, as indicated 

the range of linear viscoelasticity of about 0.5-1°,/o 2 , the 
data follow the upper part of the S-shaped relaxation 
function, close to the upper limiting modulus. In Figure 9 
data are given for various low strains to illustrate the 
reproducibility of the measurements. The upper full curve 
is the theoretical relaxation function related to the 
experiment at 0.21% strain (marked by crosses). The 
coincidence of the data shows that, with respect to the 
relaxation function, Nomex fibres can be considered as 
being linear viscoelastic for strains up to ca. 1%. Going 
to higher strains around and beyond the yield point 
positions the data on the lower part of the relaxation 
function approaching the lower limiting modulus. The 
full curves, again, give the theoretical relaxation functions. 
The similarity of the curves for higher strains indicates 
a certain invariance of the viscoelastic properties of 
Nomex, as far as the relaxation function is concerned, 
once the yield region is reached. 

The situation is rather different for Kevlar fibres as 
illustrated in Figure 10. Again, for very low strains the 
data cover the upper part of the relaxation function 
without any strain range, however, where the curves 
would superimpose to indicate LVE behaviour. Increasing 
the strain seems to shift the data continuously on the 
theoretical relaxation function towards the lower part 
and already strains of 2% seem to suffice to approach 
the range of the lower limit of W(t). 

Figure 11 summarizes results for the relaxation function 
for polypropylene fibres for strains between 0.33% and 
58%. All data cover the lower part of the relaxation 
function that is shown for the two limiting cases of 0.33% 
and 30% strain, and show a great similarity. The shift 
to longer times that seems to suggest itself for higher 
strains is due to experimental scatter, so that in reality 
the curves show a coincidence over this extended strain 
range that is similar to the LVE performance of Nomex 
in the low-strain range. Such an extended LVE strain 
range is typical for amorphous polymers above their glass 
transition temperature 2. 

Figure 12 summarizes the values for the log mean 
relaxation times for the three materials. The data relating 
to a given fibre type were shifted vertically for reasons 
of clarity. Again, three principally different types of 
behaviour are observed. 

For Nomex the mean of the CLND function stays 
constant at low strains and shows a pronounced shift by 
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Log mean relaxation times vs. log strain for the three types 
of fibres. The data groups were shifted vertically for reasons of clarity 
by a factor of k, as given on the graph 

ca. 2 decades in the range of 1.5-2% strain from 
ct = 3.5s +0.19 (95% conf.limits, e < 1%) to ~ = 1.47 +0.09 
for strains beyond 4%. The constancy of ot for low and 
high strains corresponds to the invariance of the course 
of ~(log t), as shown in Figure 9. 

In contrast to Nomex, where ~ stays constant for 
strains below ca. 1.5%, • drops for Kevlar already for 
the small-strain range, that is experimentally accessible, 
from a similar initial level as in Nomex, 0t(0.3%)_3, 
linearly with log strain by 1.5 orders of magnitude. This 
compares in size to the overall effect for Nomex 
(0.2% <e  < 30%). 

For  polypropylene the position of the CLND function 
on the log(time) scale turns out to be strain-invariant at a 
level ofot = 1.7 s + 0.18 (95% conf.limits, 0.3% < e < 100%), 
which is in good agreement with the ~ values for Nomex 
at high strain levels. This observation is consistent with 
the theory that the yield of polymers reflects a solid-fluid 
transition 22'23. Such a transition is observed for Nomex, 
which is well below T~ at room temperature (RT), while 
it is absent for PP, which at R T  is well above T r The 
relation of the relaxation times to the transition tempera- 
tures and to the viscosity of the viscous component will 
be discussed in detail in part 24. 

However, the change of the mean relaxation time is 
only one parameter to describe the relaxation per- 
formance. Figures 13-15 summarize the changes of tro 
and troo relative to tr(0) with strain. Again, three distinctly 
different types of behaviour are observed. 

Though the stress-strain curves of Nomex and Kevlar, 
given as a(0) versus e in Figures 13 and 14, are quite 
different, the relaxation during straining is negligible in 
both cases, as expressed by the fact that % is equal to 
a(0), i.e. ao/a(0)= 1, over the rather different strain ranges 
for both materials. This can be attributed to the 
considerable relaxation times still involved even at higher 
strains (10 ~" 5 _ 30 s) and to the high relative contributions 
of the non-relaxing elastic component. For  polypropylene 
the estimate for the true initial stress is 15% higher than 
the experimental initial stress, tro/tr(O ) = 1.14 + 0.06 (95 % 
conf. limits), which on the basis of similar mean relaxation 
times as in Nomex at higher strains can be attributed to 
the comparatively low relative contribution of the elastic 
component. 

Figures 13-15 show that the elastic contributions to 
the initial stress show pronounced non-linearities with 

strain, reaching minima for Nomex, Kevlar and PP  at 
strains of ca. 2%, 0.4% and 20-30%, respectively, which, 
for Nomex and polypropylene, agree well with the yield 
points of the materials. The specific consequences of these 
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Figure 13 Experimental initial stress a(0) and relative values for the 
upper level (true initial) stress ao/a(0 ) and for the equilibrium stress 
aJ.(O) vs. strain obtained from fitting the TC model to the relaxation 
data for Nomex fibres 
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Figure 15 Experimental initial stress o'(0) and the relative values for 
the upper level (true initial) stress ao/¢(0) and for the equilibrium stress 
~roo/tK0) vs. strain obtained from fitting the TC model to the relaxation 
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Figure 16 Values for the relaxation function derived from experimental 
data for the three types of fibres superimposed to form master curves 
for the reference strain as given in parentheses on the graph, a(e) is the 
acceleration factor given by equation (8) 

non-linearities for the assessment of the limits of the strain 
range of linear viscoelasticity and for the determination 
of the strain-induced changes of the component moduli 
of the TC model as well as for their relation to fibre 
morphology are discussed in detail in part 24 of this work. 

CONCLUSION 

The analysis of the relaxation curves for the three different 
materials shows that the data can in all cases be 
successfully and consistently systematized on the basis of 
the TC model. The model contains the CLND function 
as a relaxation function, where the shape is assumed to 
be strain-invariant. The analysis of Kubat's data 25'26 for 
various materials rationalizes the a priori choice of the 
shape of the relaxation, given by the standard deviation, 
fl = 1.90. 

In this context it is important to note that the known 
shape of the relaxation function and its material invari- 
ance enables the determination of E0 and/or E~ for a 
material even if only a relatively short part of the 
relaxation curve is experimentally accessible 2T. In this 
the TC model goes well beyond the possibilities of, for 
example, the Li-plot procedure to determine the elastic 
contribution to the material modulus 28'29. 

The success of a superposition principle is generally 
judged by the quality of the master curve that may be 
generated for a chosen reference state. Figure 16 sum- 
marizes the data from Figures 9-11 in the form of such 
master curves for the reference strains given on the graph. 
The results of the procedure show a very satisfactory 
superposition of the data for the various strain ranges 
and a good fit by the CLND function, validating 
specifically the assumption of strain invariance of the 
shape of the relaxation function. The quality of the 
master curves gives weight to the validity of equation (7) 
to systematize the NLVE behaviour of the three different 
types of fibre materials. The implications of the primary 
results of the analysis are presented and discussed in 
detail in part 2 of this work 4. 
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APPENDIX 

Applying the TC model as expressed in equation (3) yields 
for the values of the relaxation function q': 

qJ(t) = IF(t)-  Fo~]/(F o - F~) (A 1) 

where F(t) is the experimentally determined force value, 
F~ the limiting equilibrium force to be approached in 
an individual experiment, and Fo similarly the limiting 
initial force. Equivalent expressions may be obtained 
based on relative force, F(t)/F(O), relaxation stress, a(t), 
or modulus, E(t). 
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The fit of the cumulative log-normal distribution 
(CLND) function is based on a linearization of equation 
(6). To achieve this, the principles of the graphical method 
using cumulative probability paper 3° are applied, where 
• (t) is equated to ~(u) of the standardized, cumulative 
normal distribution as: 

f; • (t) = *(u) = (1/~-~)  exp( - ½u 2) dx (A2) 

The related values of u(q~) for the range 0 < ~(u) ~< 0.5 are 
given numerically by3~'32: 

u(~)~-tl-(ao +aFl+azq2)/(l +b~q+b2q2 +b2q a) (A2) 

with 
q = x/ln(1/~ 2 ) (A4) 

and 

ao=2.515517 b1=1.432788 

al =0.802853 b 2 =0.189269 

a2=0.010328 b3=0.001308 

and with: 
u(~)= - u ( 1 - ~ )  for 0.5<O(u)< 1 (A5) 

The absolute error of the approximation is smaller than 
4.5 x 10 -4 in the range of - 3  ~<u(~)~< +3. 

The plot of u(O) versus log t yields data points to which 
a straight line can be fitted by means of weighted linear 
regression. From the slope, b, and the intercept, a, of the 
line, the value for the mean a, and the standard deviation, 
r,  are calculated: 

~= -a /b  fl = ~ - (1  -a)/b (A6) 

With the knowledge of a and fl the values for W(t) and 
O(u) corresponding to u(t) are given numerically by31,32: 

W(t)- exp(2y)/[1 + exp(2y)] = ½[ 1 + tanh(y)] (A7) 

with 

y = x/~/n)u(t)[1 + 0.044715 u(t) 2] (AS) 

The absolute error for W(t) after successive transforma- 
tions according to equations (A3)/(A4) and (A7)/(A8) is 
limited to less than 1.8 x 10 -4 for a range of 1.35 x l0 -a 
~<W(t)~<(1-1.35x10 -a) equivalent to the range of 
- 3 ~ u ~ <  +3. 

The linearization of the CLND function via equations 
(A2)-(A4) imposes severe transformations onto the 
experimental values and their measurement errors, which 
require the application of appropriate weights in the 
linear regression procedure. 

The straight line is fitted to the transformed set of data 
[f(t), f(W)] = [log t, u(W)] using the method of least 
squares, which aims at minimizing the functiona3'34: 

N 
S= ~ w,[f(ud~)-o(f(q))] 2 (A9) 

i = l  

where w~ are the weighting factors or weights, and 
[f(tPi)-9(f(ti))] are termed residuals. 

The method implies, justifiably, thatf( t i )= log(t~) as the 
independent variable is measured with sufficient accuracy 
compared to W~ to neglect its experimental error. The 
weights w, are hence only functions of the uncertainty of 
f(Vi). 

The selection of the weights is directed by the principle 
outlined by Deming a4, namely that w~ should be 
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Figure 17 Weighting factors for fitting the CLND function to trans- 
formed experimental data for the relaxation function, using linear 
regression 

proportional to the inverse of the variance of the residual 
of the ith data set, which is identical to the variance of 
f ( ~ ) ,  so that33: 

N 
S= ~ [f(q/i)-g(f(ti))]2/a2rt~l,,) (A10) 

i=1 

where the variance of the transformed experimental value 
af(Wi)2 is given by applying the principles of error 
propagation as: 

a~v ~ = [6f(V)/6ud] 20.2  (A 11 ) 

so that: 

where: 

l l = [ 6V  l 6uffe) ] (A12) 

6ud/6u = O(u) (A 13) 

q~(u) is the standardized log-normal distribution under- 
lying the CLND function given by: 

@(u) = (1/x//~) exp( - ~ 2) (A 14) 

Assuming the measurement errors of Wi as being constant 
over the whole measurement range, the individual 
weights wi for the linearization of the CLND function, 
omitting constant factors, are taken as: 

wi = 2~@(ui) 2 = exp( -  u 2) (A 15) 

Figure 17 shows the course of the weighting function 
plotted versus ud, indicating that attaching equal weights 
to all data points would be expected to lead to quite un- 
reasonable results. The function rather gives differences of 
two orders of magnitude for the weights to be attached to 
feasible experimental readings of • = 0.98 or W = (1 - 0.98) 
compared to a reading at the inflection point of the 
relaxation function where W=0.5. In the calculation 
procedure for linear regression the weight of an experi- 
mental value is introduced as would be the number of 
measurements in the case of multiple determinations with 
identical values. 

The weighted linear regression is the basis for an 
optimization procedure, with the restriction of fl = 1.9o, 
in which the initial and equilibrium values for force, stress 
or modulus, e.g. F o and F~, are chosen such that the 
coefficient of determination r 2 and hence the correlation 
coefficient r reach maxima and the coefficient of non- 
determination ( 1 - r  2) a minimum, respectively. All 
calculations were realized in a spreadsheet application 
on the basis of Quattro Pro (Borland). 
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